Breast Cancer Diagnosis¶
Objective: Create a classifier that can help diagnose breast cancer.
Import libraries¶
In [1]:
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, ConfusionMatrixDisplay
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("whitegrid")
Load the dataset¶
In [2]:
data = load_breast_cancer(as_frame=True)
df = data.frame
df.head()
Out[2]:
mean radius | mean texture | mean perimeter | mean area | mean smoothness | mean compactness | mean concavity | mean concave points | mean symmetry | mean fractal dimension | ... | worst texture | worst perimeter | worst area | worst smoothness | worst compactness | worst concavity | worst concave points | worst symmetry | worst fractal dimension | target | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 17.99 | 10.38 | 122.80 | 1001.0 | 0.11840 | 0.27760 | 0.3001 | 0.14710 | 0.2419 | 0.07871 | ... | 17.33 | 184.60 | 2019.0 | 0.1622 | 0.6656 | 0.7119 | 0.2654 | 0.4601 | 0.11890 | 0 |
1 | 20.57 | 17.77 | 132.90 | 1326.0 | 0.08474 | 0.07864 | 0.0869 | 0.07017 | 0.1812 | 0.05667 | ... | 23.41 | 158.80 | 1956.0 | 0.1238 | 0.1866 | 0.2416 | 0.1860 | 0.2750 | 0.08902 | 0 |
2 | 19.69 | 21.25 | 130.00 | 1203.0 | 0.10960 | 0.15990 | 0.1974 | 0.12790 | 0.2069 | 0.05999 | ... | 25.53 | 152.50 | 1709.0 | 0.1444 | 0.4245 | 0.4504 | 0.2430 | 0.3613 | 0.08758 | 0 |
3 | 11.42 | 20.38 | 77.58 | 386.1 | 0.14250 | 0.28390 | 0.2414 | 0.10520 | 0.2597 | 0.09744 | ... | 26.50 | 98.87 | 567.7 | 0.2098 | 0.8663 | 0.6869 | 0.2575 | 0.6638 | 0.17300 | 0 |
4 | 20.29 | 14.34 | 135.10 | 1297.0 | 0.10030 | 0.13280 | 0.1980 | 0.10430 | 0.1809 | 0.05883 | ... | 16.67 | 152.20 | 1575.0 | 0.1374 | 0.2050 | 0.4000 | 0.1625 | 0.2364 | 0.07678 | 0 |
5 rows × 31 columns
Understand the dataset¶
The Breast Cancer Wisconsin (Diagnostic) dataset is a classic binary classification dataset.
In [3]:
print(data.DESCR[:1000], end="...")
.. _breast_cancer_dataset: Breast cancer wisconsin (diagnostic) dataset -------------------------------------------- **Data Set Characteristics:** :Number of Instances: 569 :Number of Attributes: 30 numeric, predictive attributes and the class :Attribute Information: - radius (mean of distances from center to points on the perimeter) - texture (standard deviation of gray-scale values) - perimeter - area - smoothness (local variation in radius lengths) - compactness (perimeter^2 / area - 1.0) - concavity (severity of concave portions of the contour) - concave points (number of concave portions of the contour) - symmetry - fractal dimension ("coastline approximation" - 1) The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius. - ...
In [4]:
df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 31 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 mean radius 569 non-null float64 1 mean texture 569 non-null float64 2 mean perimeter 569 non-null float64 3 mean area 569 non-null float64 4 mean smoothness 569 non-null float64 5 mean compactness 569 non-null float64 6 mean concavity 569 non-null float64 7 mean concave points 569 non-null float64 8 mean symmetry 569 non-null float64 9 mean fractal dimension 569 non-null float64 10 radius error 569 non-null float64 11 texture error 569 non-null float64 12 perimeter error 569 non-null float64 13 area error 569 non-null float64 14 smoothness error 569 non-null float64 15 compactness error 569 non-null float64 16 concavity error 569 non-null float64 17 concave points error 569 non-null float64 18 symmetry error 569 non-null float64 19 fractal dimension error 569 non-null float64 20 worst radius 569 non-null float64 21 worst texture 569 non-null float64 22 worst perimeter 569 non-null float64 23 worst area 569 non-null float64 24 worst smoothness 569 non-null float64 25 worst compactness 569 non-null float64 26 worst concavity 569 non-null float64 27 worst concave points 569 non-null float64 28 worst symmetry 569 non-null float64 29 worst fractal dimension 569 non-null float64 30 target 569 non-null int64 dtypes: float64(30), int64(1) memory usage: 137.9 KB
Visualize some features of the dataset¶
In [5]:
fig, axs = plt.subplots(4, 3, figsize=(15, 20))
for ax, feature in zip(axs.flatten(), list(df.columns[:10]) + ["target"]):
if len(df[feature].unique()) <= 10:
labels, sizes = np.unique(df[feature], return_counts=True)
sns.barplot(x=labels, y=sizes, hue=labels, ax=ax, palette="tab10", legend=False)
ax.set_xlabel("")
ax.set_title(feature)
else:
sns.histplot(data=df, x=feature, ax=ax, hue="target")
ax.set_xlabel("")
ax.set_title(feature)
axs[3, 2].axis("off")
plt.tight_layout()
plt.show()
Visualize the class distribution¶
In [6]:
labels, sizes = np.unique(df["target"], return_counts=True)
fig, ax = plt.subplots()
ax.pie(sizes, textprops={'color': "w", 'fontsize': '12'}, autopct=lambda pct: "{:.2f}%\n({:d})".format(pct, round(pct/100 * sum(sizes))))
ax.legend([str(i) + " (malignant)" if i == 0 else str(i) + " (benign)" for i in labels])
ax.set_title("target")
plt.show()
Split the dataset into train and test subsets¶
In [7]:
X = df.drop(['target'], axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)
X_train shape: (426, 30) X_test shape: (143, 30)
Find the optimal number of neighbors for a k-Nearest Neighbors classifier¶
In [8]:
n_neighbors = range(1, 21)
parameters = {'n_neighbors': n_neighbors}
knn_classifier = KNeighborsClassifier()
clf = GridSearchCV(knn_classifier, parameters, scoring='recall')
clf.fit(X_train, y_train)
Out[8]:
GridSearchCV(estimator=KNeighborsClassifier(), param_grid={'n_neighbors': range(1, 21)}, scoring='recall')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
GridSearchCV(estimator=KNeighborsClassifier(), param_grid={'n_neighbors': range(1, 21)}, scoring='recall')
KNeighborsClassifier(n_neighbors=15)
KNeighborsClassifier(n_neighbors=15)
In [9]:
plt.figure()
plt.plot(n_neighbors, clf.cv_results_['mean_test_score'])
plt.xlabel("Number of neighbors")
plt.ylabel("Mean recall score")
plt.xticks(n_neighbors[::-2])
plt.show()
Evaluate the model¶
In [10]:
y_pred = clf.best_estimator_.predict(X_test)
print(classification_report(y_test, y_pred, digits=4))
ConfusionMatrixDisplay.from_predictions(y_test, y_pred, display_labels=["0 (malignant)", "1 (benign)"])
plt.grid(False)
plt.show()
precision recall f1-score support 0 0.9608 0.9245 0.9423 53 1 0.9565 0.9778 0.9670 90 accuracy 0.9580 143 macro avg 0.9587 0.9512 0.9547 143 weighted avg 0.9581 0.9580 0.9579 143